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ABSTRACT: Publicly available industrial energy datasets are increasingly used to benchmark machine learning methods
for load prediction. However, many studies focus directly on complex algorithms and report high accuracy without first
analysing the temporal structure of the process or establishing strong, transparent baselines under realistic validation. This
paper presents Part | of a two-part study on the “Steel Industry Energy Consumption” dataset, a one-year, 15-minute
resolution time series from a steel manufacturing plant. We first perform a compact but systematic exploratory analysis of
the dataset, examining daily and weekly load patterns, the distribution of energy consumption across declared operating
regimes, and the relationship between active energy, reactive energy and associated CO. emissions. On top of this
characterization, we construct several short-term forecasting baselines for one-step-ahead prediction of active energy usage:
a mean model, naive and seasonal naive benchmarks, and a linear regression model using only calendar and categorical
variables (week status, day of week and load type). Models are trained on the first ten months of 2018 and evaluated on the
last two months to preserve temporal ordering. Results show a highly structured temporal behaviour, with pronounced
production windows on weekdays and reduced operation at weekends. Load type labels correspond to distinct operating
regimes, though with some overlap. The linear regression baseline clearly outperforms the naive and seasonal naive models,
achieving a mean absolute error of about 2.35 kWh and a root-mean-square error of about 3.50 kWh on the test set. The
study demonstrates that simple models, when evaluated with time-aware splits, already provide strong performance and
interpretable insight, and therefore form a necessary reference point for more sophisticated machine learning approaches
that will be analyzed in Part 11.

Key-Words: industrial energy consumption; steel industry; load forecasting; time series; baseline models; exploratory data
analysis

1.INTRODUCTION Industry Energy Consumption” dataset [1],
Electric steelmaking is one of the most energy- which covers a full year of operation in a steel
intensive industrial activities, and electricity plant at a 15-minute resolution and includes
costs represent a major share of operating active and reactive energy, power factor,
expenses in modern steel plants. Accurate short- derived CO: emissions and categorical
term forecasting of electrical load is therefore indicators of operating regime. Much of the
important for production scheduling, demand- published work that uses this dataset focuses on
side management and participation in electricity comparing  algorithms—random  forests,
markets. In parallel, decarbonization policies gradient boosting, artificial neural networks,
and carbon pricing increase the interest in recurrent neural networks—under various
reliable, data-driven models that explain and feature engineering choices. While these studies
predict both energy usage and associated are valuable [2-6], they often devote limited
emissions. In the last few years, several open space to a detailed exploratory analysis of the
datasets from industrial facilities have appeared dataset and to the construction of simple,
on public platforms such as Kaggle [1]. They transparent baseline models. As a result,
provide a convenient benchmark for testing reported performance numbers may be difficult
machine learning models and for teaching to interpret, especially when random train—test
energy analytics. One such dataset is the “Steel splits are used without regard to the time-
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ordered nature of the data. The goal of this paper
Is to take a step back and answer two basic
questions. First, what does this dataset actually
look like in terms of temporal patterns and
operating regimes? Second, how well can we
already predict short-term load using very
simple models and a realistic temporal split
between training and test data? Addressing
these questions is important both for
practitioners who might use the dataset and for
researchers who wish to assess the added value
of more sophisticated methods.

This contribution is Part | of a two-paper series.
Here we focus on exploratory data analysis and
baseline modelling. Part 11 will build on these
results to investigate more advanced machine
learning models, time-aware validation
strategies and model interpretability techniques.

2. DATASET AND PRE-PROCESSING
The Steel Industry Energy Consumption [1]
dataset comprises 35,040 records collected
during 2018 with a sampling interval of 15
minutes. After parsing the time stamp and
sorting chronologically, the dataset spans from
1 January 2018 00:00 to 31 December 2018
23:45.

The main variables considered in this study are:
« Usage_kWh —active electrical energy in kWh

for each 15-minute interval (target variable);

« Lagging_Current_Reactive.Power_kVarh
and
Leading_Current_Reactive_Power_kVarh
— lagging and leading reactive energy;

¢« CO2(tCO2) — equivalent CO. emissions,
presumably obtained by applying an emissions
factor to the active energy;

« Lagging_Current_Power_Factor
Leading_Current_Power_Factor;

e NSM — number of seconds from midnight

(0-86,400);

and
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o WeekStatus - categorical flag
distinguishing weekdays from weekends;

o Day of week — categorical day name;

e Load_Type — categorical label describing
the  operating regime: Light_Load,
Medium_Load or Maximum_Load.

For the analyses below, we derive additional
calendar features from the timestamp: hour of
day and integer day-of-week index. No missing
values were identified, so no imputation was
carried out. To mimic a realistic forecasting
scenario and avoid information leakage, we
adopt a strictly chronological train—test split.
The first ten months (January—October 2018)
are used as the training set, and the last two
months (November—December 2018) constitute
the test set on which all performance metrics are
computed.

3.EXPLORATORY DATA ANALYSIS
3.1 Daily and weekly load patterns

To understand the temporal structure of the
load, we first examine average daily profiles.
For each combination of hour of day and week
status (weekday or weekend), we compute mean
energy usage. The resulting profiles represented
in Figure 1, show a very clear pattern. On
weekdays, there is a low “base load” during the
night and early morning. Around 08:00-09:00
the load rises sharply, reaching a high plateau
that extends through most of the working day.
After 20:00 the load decreases again towards
evening levels. Weekends display a similar
shape but at significantly lower magnitude
across all hours, suggesting reduced production
activity and possible maintenance. This
behavior indicates that much of the variation in
short-term load is driven by the production
schedule, which is strongly aligned with the
calendar. Even without considering more
detailed process variables, time-of-day and the
weekday/weekend label already provide a
strong explanatory signal for the load.
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Average Daily Load Profile by Hour
Weekday vs Weekend

Average Usage (kwh)
N (] £ [¥,] (=) -l
o o o o o o
| | | | ! |

=
o
L

—8— Weekday
Weekend

T
10

T T
15 20

Hour of Day

Figure 1. Load pattern by regular work day and weekend

3.2 Operating regimes: distribution by load
type

The dataset includes a categorical variable,
Load_Type, that indicates Light, Medium or
Maximum load. We analyse the distribution of
Usage_kWh within each category. Light_Load
intervals cluster tightly around low energy
values, typically between 3 and 6 kWh, with a
narrow spread. Medium_Load data cover a
much broader range, extending from a few kWh
up to around 60 kWh, while Maximum_Load
intervals have higher median values and reach

well above 100 kWh. This confirms that
Load_Type corresponds to distinct operating
regimes in the plant: low-load standby or
auxiliary operation, normal production and
high-load periods. At the same time, the ranges
of Medium and Maximum load overlap to some
degree, which hints at varying equipment
combinations or process steps within each
regime. From a modelling standpoint,
Load Type is therefore a meaningful
explanatory variable for energy usage and
should be included in any baseline.

Distribution of Usage by Load Type
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Figure 2. Usage distribution by load type

3.3 Relationship between energy usage, CO:
and reactive energy

We next examine how active energy usage
relates to CO2 emissions and reactive energy. A
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scatter plot of Usage kWh versus CO; (tCO>)
reveals an almost piecewise linear relationship:
data points fall on a small number of distinct
lines, each corresponding to a fixed ratio of CO2
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per kWh. This behaviour is consistent with Higher active energy usage tends to be
emissions being calculated from energy accompanied by higher lagging reactive energy,
consumption via an emission factor. It also reflecting the inductive nature of industrial
means that, in this dataset, CO2 does not provide loads. The spread around the trend suggests
additional independent information once differences in power factor associated with
Usage_kWh is known. For forecasting different equipment or process stages. Unlike
electricity usage, CO: can therefore be safely CO., reactive energy and power factor variables
omitted or treated as a redundant variable. The hold physical information about the plant’s
relationship  between  Usage kWh  and operating state and may thus be valuable
Lagging_Current_Reactive.Power_kVarh  is predictors or indicators of efficiency.

also strongly positive, but with more dispersion.

Relationship Between Electricity Usage and COz Emissions Usage vs Lagging Reactive Energy
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Figure 3. CO2 emissions and Lagging Reactive Energy versus Usage (left and right, respectively)
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4. Baseline Forecasting Models 1. Mean model
4.1 Problem formulation and evaluation The predictor always outputs the mean load
metrics

observed in the training set. It is an

We consider one-step-ahead forecasting of intentionally weak baseline.

energy usage at the 15-minute horizon. At each

time step t, given information up to time ¢, the 2. Naive model (last value)
task is to predict Usage kWh at time ¢ + 1. The forecast for the next interval equals the
Model performance is evaluated on the last observed value: y,,, = y;. This is a
November—December 2018 test set using three standard benchmark in time series analysis.
standard metrics: 3. Seasonal naive model (same time

e Mean Absolute Error (MAE) -
average absolute difference between
predicted and actual values;

e Root-Mean-Square Error (RMSE) —
square root of the mean squared error,
emphasizing larger deviations;

e Mean Absolute Percentage Error
(MAPE) — average absolute error as a
percentage of the actual value,
computed only for non-zero loads.

yesterday)
The forecast uses the value at the same time
one day earlier: y;,1 = Vi+96, Where 96
time steps correspond to 24 hours. This
captures purely daily seasonality.

4. Linear regression with calendar and
categorical features
A multiple linear regression model is built
using only exogenous features derived from
the timestamp and categorical variables:
hour of day, integer day-of-week, and one-

4.2 Baseline models hot encoded WeekStatus, Day_of week and

Four baseline models are implemented:
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Load Type. No autoregressive terms
(lagged Usage_kWh) are included in this
Part | baseline, to keep the model
transparent and easy to interpret. The model

is fitted on the training period and then
applied to the test period without re-
estimation.

Table 1. Performance metrics of the models considered

Model MAE RMSE MAPE (%)
Mean (train average) 27.575 31.281 419.52
Naive (y_t-1) 5.197 11.845 20.93
Seasonal Naive (y_t-96) 14.363 26.662 133.501
Linear Regression (calendar +
categorical) 2.351 3.495 20.174

4.3 Results

Table 1 summarizes the performance of the four
baselines on the test set.

Mean model: MAE = 27.6 kWh, RMSE
=~ 31.3 kWh, MAPE = 420 %.

Naive model (last value): MAE = 5.20
kWh, RMSE = 11.8 kWh, MAPE = 20.9
%.

Seasonal naive model (same time
yesterday): MAE = 14.4 kWh, RMSE =
26.7 kWh, MAPE = 133.5 %.

Linear  regression  (calendar +
categorical): MAE = 2.35 kWh, RMSE
~3.50 kWh, MAPE = 20.2 %.

As expected, the mean model performs very
poorly and serves only as a lower bound. The
naive last-value model already provides a
relatively strong baseline: predicting the next
15-minute load by simply carrying forward the
current value yields a MAE of about 5.2 kWh.
Interestingly, the seasonal naive model based on
daily periodicity performs worse, indicating that
short-term fluctuations and intra-day dynamics
are more informative than the pure daily pattern
for this plant. The linear regression baseline,
despite its simplicity and lack of autoregressive
terms, clearly outperforms the naive models in
terms of MAE and RMSE. With an MAE
around 2.35 kWh and RMSE around 3.5 kWh,
it captures much of the systematic variation in
the load using only clock time,
weekday/weekend status and operating regime
labels. The MAPE of the linear model is similar
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to that of the naive model; this is partly due to
periods of very low load, where even small
absolute errors translate into large percentage
errors.

5. DISCUSSION

The exploratory analysis and baseline results
lead to several observations that are relevant
both for practical use of the dataset and for
future methodological work. First, the steel
plant’s operation is strongly structured in time.
Clear production windows exist on weekdays,
and weekends operate at significantly lower
levels. Any forecasting model that ignores
calendar information is bound to miss a large
part of the signal. Conversely, even very simple
models that rely only on such information, as
demonstrated by the linear regression baseline,
can achieve surprisingly good performance.
Second, the provided Load_Type labels
correspond to distinct operating regimes with
well-separated typical energy usage ranges.
Their inclusion in the regression model likely
explains a significant share of the improvement
over purely time-based benchmarks. In practice,
this underlines the importance of combining
process knowledge (here, operating regime)
with time-series structure. Third, the analysis of
CO: emissions reveals that they are effectively
a deterministic transformation of active energy
usage. While this is not surprising, it serves as a
reminder that including such variables without
scrutiny can inflate the apparent dimensionality
of the feature space without adding genuine
information. In contrast, reactive energy and
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power factor variables carry physically
meaningful information about the nature of the
loads and may be particularly relevant for power
quality or efficiency studies in future work.

Finally, the relatively strong performance of the
naive last-value model emphasizes the need for
rigorous baseline comparisons. Any complex
machine learning model applied to this dataset
should be evaluated against both the naive
benchmark and the simple linear regression with
calendar and categorical features, using a time-
ordered split similar to the one adopted here.
Improvements that do not clearly exceed these
baselines may not justify the added complexity.

CONCLUSIONS

This paper presented a first, deliberately simple
step in analysing the Steel Industry Energy
Consumption dataset. We provided a concise
overview of the data, explored daily and weekly
load patterns, examined the role of operating
regimes and investigated the relationships
between active energy, reactive energy and
derived CO: emissions. Based on this
understanding, we developed and evaluated four
short-term forecasting baselines for 15-minute
ahead prediction of energy usage: mean, naive,
seasonal naive and a linear regression using only
calendar and categorical features. Using a
realistic training—test split that respects the time
ordering of the data, the linear regression model
achieved a mean absolute error of
approximately 2.35 kWh and a root-mean-
square error of 3.5 kWh, clearly outperforming
naive alternatives. These results show that even
very simple models, when combined with
appropriate validation, can provide strong and
interpretable performance on this industrial
dataset. They also provide a reference level
against which more advanced methods must be
compared. In the companion Part 1l paper, we
plan to extend this work in three directions: (i)
incorporating autoregressive terms and lagged
process variables into the feature set; (ii)
evaluating tree-based and neural models under
time-aware cross-validation schemes; and (iii)
applying model-agnostic interpretability tools to
quantify the relative importance of calendar,
regime and electrical variables. Together, the
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two parts aim to provide both a rigorous
benchmark for data-driven energy analytics in
industrial settings.
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