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ABSTRACT: Publicly available industrial energy datasets are increasingly used to benchmark machine learning methods 

for load prediction. However, many studies focus directly on complex algorithms and report high accuracy without first 

analysing the temporal structure of the process or establishing strong, transparent baselines under realistic validation. This 

paper presents Part I of a two-part study on the “Steel Industry Energy Consumption” dataset, a one-year, 15-minute 

resolution time series from a steel manufacturing plant. We first perform a compact but systematic exploratory analysis of 

the dataset, examining daily and weekly load patterns, the distribution of energy consumption across declared operating 

regimes, and the relationship between active energy, reactive energy and associated CO₂ emissions. On top of this 

characterization, we construct several short-term forecasting baselines for one-step-ahead prediction of active energy usage: 

a mean model, naive and seasonal naive benchmarks, and a linear regression model using only calendar and categorical 

variables (week status, day of week and load type). Models are trained on the first ten months of 2018 and evaluated on the 

last two months to preserve temporal ordering. Results show a highly structured temporal behaviour, with pronounced 

production windows on weekdays and reduced operation at weekends. Load type labels correspond to distinct operating 

regimes, though with some overlap. The linear regression baseline clearly outperforms the naive and seasonal naive models, 

achieving a mean absolute error of about 2.35 kWh and a root-mean-square error of about 3.50 kWh on the test set. The 

study demonstrates that simple models, when evaluated with time-aware splits, already provide strong performance and 

interpretable insight, and therefore form a necessary reference point for more sophisticated machine learning approaches 

that will be analyzed in Part II. 
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1.INTRODUCTION 
Electric steelmaking is one of the most energy-

intensive industrial activities, and electricity 

costs represent a major share of operating 

expenses in modern steel plants. Accurate short-

term forecasting of electrical load is therefore 

important for production scheduling, demand-

side management and participation in electricity 

markets. In parallel, decarbonization policies 

and carbon pricing increase the interest in 

reliable, data-driven models that explain and 

predict both energy usage and associated 

emissions. In the last few years, several open 

datasets from industrial facilities have appeared 

on public platforms such as Kaggle [1]. They 

provide a convenient benchmark for testing 

machine learning models and for teaching 

energy analytics. One such dataset is the “Steel 

Industry Energy Consumption” dataset [1], 

which covers a full year of operation in a steel 

plant at a 15-minute resolution and includes 

active and reactive energy, power factor, 

derived CO₂ emissions and categorical 

indicators of operating regime. Much of the 

published work that uses this dataset focuses on 

comparing algorithms—random forests, 

gradient boosting, artificial neural networks, 

recurrent neural networks—under various 

feature engineering choices. While these studies 

are valuable [2-6], they often devote limited 

space to a detailed exploratory analysis of the 

dataset and to the construction of simple, 

transparent baseline models. As a result, 

reported performance numbers may be difficult 

to interpret, especially when random train–test 

splits are used without regard to the time-
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ordered nature of the data. The goal of this paper

is to take a step back and answer two basic

questions. First, what does this dataset actually

look like in terms of temporal patterns and

operating regimes? Second, how well can we

already predict short-term load using very

simple models and a realistic temporal split

between training and test data? Addressing

these questions is important both for

practitioners who might use the dataset and for

researchers who wish to assess the added value

of more sophisticated methods.

This contribution is Part I of a two-paper series.

Here we focus on exploratory data analysis and

baseline modelling. Part II will build on these

results to investigate more advanced machine

learning models, time-aware validation

strategies and model interpretability techniques.

2. DATASET AND PRE-PROCESSING
The Steel Industry Energy Consumption [1]

dataset comprises 35,040 records collected

during 2018 with a sampling interval of 15

minutes. After parsing the time stamp and

sorting chronologically, the dataset spans from

1 January 2018 00:00 to 31 December 2018

23:45.

The main variables considered in this study are:

• Usage_kWh – active electrical energy in kWh

for each 15-minute interval (target variable);

• Lagging_Current_Reactive.Power_kVarh

and

Leading_Current_Reactive_Power_kVarh

– lagging and leading reactive energy;

• CO2(tCO2) – equivalent CO₂ emissions,

presumably obtained by applying an emissions

factor to the active energy;

• Lagging_Current_Power_Factor and

Leading_Current_Power_Factor;

• NSM – number of seconds from midnight

(0–86,400);

• WeekStatus – categorical flag

distinguishing weekdays from weekends;

• Day_of_week – categorical day name;

• Load_Type – categorical label describing

the operating regime: Light_Load,

Medium_Load or Maximum_Load.

For the analyses below, we derive additional

calendar features from the timestamp: hour of

day and integer day-of-week index. No missing

values were identified, so no imputation was

carried out. To mimic a realistic forecasting

scenario and avoid information leakage, we

adopt a strictly chronological train–test split.

The first ten months (January–October 2018)

are used as the training set, and the last two

months (November–December 2018) constitute

the test set on which all performance metrics are

computed.

3.EXPLORATORY DATA ANALYSIS
3.1 Daily and weekly load patterns

To understand the temporal structure of the

load, we first examine average daily profiles.

For each combination of hour of day and week

status (weekday or weekend), we compute mean

energy usage. The resulting profiles represented

in Figure 1, show a very clear pattern. On

weekdays, there is a low “base load” during the

night and early morning. Around 08:00–09:00

the load rises sharply, reaching a high plateau

that extends through most of the working day.

After 20:00 the load decreases again towards

evening levels. Weekends display a similar

shape but at significantly lower magnitude

across all hours, suggesting reduced production

activity and possible maintenance. This

behavior indicates that much of the variation in

short-term load is driven by the production

schedule, which is strongly aligned with the

calendar. Even without considering more

detailed process variables, time-of-day and the

weekday/weekend label already provide a

strong explanatory signal for the load.
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Figure 1. Load pattern by regular work day and weekend

3.2 Operating regimes: distribution by load

type

The dataset includes a categorical variable,

Load_Type, that indicates Light, Medium or

Maximum load. We analyse the distribution of

Usage_kWh within each category. Light_Load

intervals cluster tightly around low energy

values, typically between 3 and 6 kWh, with a

narrow spread. Medium_Load data cover a

much broader range, extending from a few kWh

up to around 60 kWh, while Maximum_Load

intervals have higher median values and reach

well above 100 kWh. This confirms that

Load_Type corresponds to distinct operating

regimes in the plant: low-load standby or

auxiliary operation, normal production and

high-load periods. At the same time, the ranges

of Medium and Maximum load overlap to some

degree, which hints at varying equipment

combinations or process steps within each

regime. From a modelling standpoint,

Load_Type is therefore a meaningful

explanatory variable for energy usage and

should be included in any baseline.

Figure 2. Usage distribution by load type

3.3 Relationship between energy usage, CO₂

and reactive energy

We next examine how active energy usage

relates to CO₂ emissions and reactive energy. A

scatter plot of Usage_kWh versus CO2 (tCO2)

reveals an almost piecewise linear relationship:

data points fall on a small number of distinct

lines, each corresponding to a fixed ratio of CO₂
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per kWh. This behaviour is consistent with

emissions being calculated from energy

consumption via an emission factor. It also

means that, in this dataset, CO₂ does not provide

additional independent information once

Usage_kWh is known. For forecasting

electricity usage, CO₂ can therefore be safely

omitted or treated as a redundant variable. The

relationship between Usage_kWh and

Lagging_Current_Reactive.Power_kVarh is

also strongly positive, but with more dispersion.

Higher active energy usage tends to be

accompanied by higher lagging reactive energy,

reflecting the inductive nature of industrial

loads. The spread around the trend suggests

differences in power factor associated with

different equipment or process stages. Unlike

CO₂, reactive energy and power factor variables

hold physical information about the plant’s

operating state and may thus be valuable

predictors or indicators of efficiency.

Figure 3. CO2 emissions and Lagging Reactive Energy versus Usage (left and right, respectively)

4. Baseline Forecasting Models

4.1 Problem formulation and evaluation

metrics

We consider one-step-ahead forecasting of

energy usage at the 15-minute horizon. At each

time step 𝑡, given information up to time 𝑡, the

task is to predict Usage_kWh at time 𝑡 + 1.

Model performance is evaluated on the

November–December 2018 test set using three

standard metrics:

• Mean Absolute Error (MAE) –

average absolute difference between

predicted and actual values;

• Root-Mean-Square Error (RMSE) –

square root of the mean squared error,

emphasizing larger deviations;

• Mean Absolute Percentage Error

(MAPE) – average absolute error as a

percentage of the actual value,

computed only for non-zero loads.

4.2 Baseline models

Four baseline models are implemented:

1. Mean model

The predictor always outputs the mean load

observed in the training set. It is an

intentionally weak baseline.

2. Naive model (last value)

The forecast for the next interval equals the

last observed value: 𝑦̂𝑡+1 = 𝑦𝑡. This is a

standard benchmark in time series analysis.

3. Seasonal naïve model (same time

yesterday)

The forecast uses the value at the same time

one day earlier: 𝑦̂𝑡+1 = 𝑦𝑡+96, where 96

time steps correspond to 24 hours. This

captures purely daily seasonality.

4. Linear regression with calendar and

categorical features

A multiple linear regression model is built

using only exogenous features derived from

the timestamp and categorical variables:

hour of day, integer day-of-week, and one-

hot encoded WeekStatus, Day_of_week and
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Load_Type. No autoregressive terms

(lagged Usage_kWh) are included in this

Part I baseline, to keep the model

transparent and easy to interpret. The model

is fitted on the training period and then

applied to the test period without re-

estimation.

Table 1. Performance metrics of the models considered

Model MAE RMSE MAPE (%)

Mean (train average) 27.575 31.281 419.52

Naïve (y_t-1) 5.197 11.845 20.93

Seasonal Naive (y_t-96) 14.363 26.662 133.501

Linear Regression (calendar +

categorical) 2.351 3.495 20.174

4.3 Results

Table 1 summarizes the performance of the four

baselines on the test set.

• Mean model: MAE ≈ 27.6 kWh, RMSE

≈ 31.3 kWh, MAPE ≈ 420 %.

• Naive model (last value): MAE ≈ 5.20

kWh, RMSE ≈ 11.8 kWh, MAPE ≈ 20.9

%.

• Seasonal naive model (same time

yesterday): MAE ≈ 14.4 kWh, RMSE ≈

26.7 kWh, MAPE ≈ 133.5 %.

• Linear regression (calendar +

categorical): MAE ≈ 2.35 kWh, RMSE

≈ 3.50 kWh, MAPE ≈ 20.2 %.

As expected, the mean model performs very

poorly and serves only as a lower bound. The

naive last-value model already provides a

relatively strong baseline: predicting the next

15-minute load by simply carrying forward the

current value yields a MAE of about 5.2 kWh.

Interestingly, the seasonal naive model based on

daily periodicity performs worse, indicating that

short-term fluctuations and intra-day dynamics

are more informative than the pure daily pattern

for this plant. The linear regression baseline,

despite its simplicity and lack of autoregressive

terms, clearly outperforms the naive models in

terms of MAE and RMSE. With an MAE

around 2.35 kWh and RMSE around 3.5 kWh,

it captures much of the systematic variation in

the load using only clock time,

weekday/weekend status and operating regime

labels. The MAPE of the linear model is similar

to that of the naive model; this is partly due to

periods of very low load, where even small

absolute errors translate into large percentage

errors.

5. DISCUSSION
The exploratory analysis and baseline results

lead to several observations that are relevant

both for practical use of the dataset and for

future methodological work. First, the steel

plant’s operation is strongly structured in time.

Clear production windows exist on weekdays,

and weekends operate at significantly lower

levels. Any forecasting model that ignores

calendar information is bound to miss a large

part of the signal. Conversely, even very simple

models that rely only on such information, as

demonstrated by the linear regression baseline,

can achieve surprisingly good performance.

Second, the provided Load_Type labels

correspond to distinct operating regimes with

well-separated typical energy usage ranges.

Their inclusion in the regression model likely

explains a significant share of the improvement

over purely time-based benchmarks. In practice,

this underlines the importance of combining

process knowledge (here, operating regime)

with time-series structure. Third, the analysis of

CO₂ emissions reveals that they are effectively

a deterministic transformation of active energy

usage. While this is not surprising, it serves as a

reminder that including such variables without

scrutiny can inflate the apparent dimensionality

of the feature space without adding genuine

information. In contrast, reactive energy and
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power factor variables carry physically

meaningful information about the nature of the

loads and may be particularly relevant for power

quality or efficiency studies in future work.

Finally, the relatively strong performance of the

naive last-value model emphasizes the need for

rigorous baseline comparisons. Any complex

machine learning model applied to this dataset

should be evaluated against both the naive

benchmark and the simple linear regression with

calendar and categorical features, using a time-

ordered split similar to the one adopted here.

Improvements that do not clearly exceed these

baselines may not justify the added complexity.

CONCLUSIONS
This paper presented a first, deliberately simple

step in analysing the Steel Industry Energy

Consumption dataset. We provided a concise

overview of the data, explored daily and weekly

load patterns, examined the role of operating

regimes and investigated the relationships

between active energy, reactive energy and

derived CO₂ emissions. Based on this

understanding, we developed and evaluated four

short-term forecasting baselines for 15-minute

ahead prediction of energy usage: mean, naive,

seasonal naive and a linear regression using only

calendar and categorical features. Using a

realistic training–test split that respects the time

ordering of the data, the linear regression model

achieved a mean absolute error of

approximately 2.35 kWh and a root-mean-

square error of 3.5 kWh, clearly outperforming

naïve alternatives. These results show that even

very simple models, when combined with

appropriate validation, can provide strong and

interpretable performance on this industrial

dataset. They also provide a reference level

against which more advanced methods must be

compared. In the companion Part II paper, we

plan to extend this work in three directions: (i)

incorporating autoregressive terms and lagged

process variables into the feature set; (ii)

evaluating tree-based and neural models under

time-aware cross-validation schemes; and (iii)

applying model-agnostic interpretability tools to

quantify the relative importance of calendar,

regime and electrical variables. Together, the

two parts aim to provide both a rigorous

benchmark for data-driven energy analytics in

industrial settings.
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